BOUNDARY BEHAVIOR OF A NONPARAMETRIC SURFACE OF PRESCRIBED MEAN CURVATURE NEAR A REENTRANT CORNER

ALAN R. ELCRAT AND KIRK E. LANCASTER

ABSTRACT. Let Ω be an open set in \mathbb{R}^2 which is locally convex at each point of its boundary except one, say (0,0). Under certain mild assumptions, the solution of a prescribed mean curvature equation on Ω behaves as follows: All radial limits of the solution from directions in Ω exist at (0,0), these limits are not identical, and the limits from a certain half-space (H) are identical. In particular, the restriction of the solution to $\Omega \cap H$ is the solution of an appropriate Dirichlet problem.

- **0.** Introduction. We consider here the behavior of a generalized solution of the equation for surfaces of prescribed mean curvature at an inner corner of the boundary where the solution is discontinuous. This work is a generalization of the previous work of the second author [8], which dealt with the minimal surface equation. It was shown there that all radial limits exist and that they are constant in directions coming from a half-space. Here we find that the same result holds for (nonparametric) surfaces of prescribed mean curvature.
- 1. Preliminaries. Let Ω be a bounded, open, connected, simply connected subset of \mathbf{R}^2 with $N=(0,0)\in\partial\Omega$ such that Ω is locally convex at each point of $\partial\Omega\setminus\{N\}$. Let H(x,y,t) be a continuous function on $\Omega\times\mathbf{R}$ and $\phi\in C^0(\partial\Omega)$. We will make a number of assumptions which will hold throughout this work.

ASSUMPTIONS. (A) The equation

(1)
$$(p/W)_x + (q/W)_y = 2H(x, y, z(x, y))$$

has a solution $z = f \in C^2(\Omega)$, where $p = z_x$, $q = z_y$, and $W^2 = 1 + p^2 + q^2$.

- (B) $f \in C^0(\overline{\Omega} \setminus \{N\})$ and $f = \phi$ on $\partial \Omega \setminus \{N\}$.
- (C) $F \notin C^0(\overline{\Omega})$.
- (D) There exists Q > 0 such that $|H(x, y, f(x, y))| \leq Q$ for all $(x, y) \in \Omega$.
- (E) The area of the graph of f over Ω is finite.

A function f satisfying the above conditions can be obtained as a generalized solution of the Dirichlet problem for (1) in Ω with data ϕ .

One method for obtaining such solutions is to minimize the functional

$$\iint_{\Omega} (1+f_x+f_y)^{1/2}\,dx\,dy + \iint_{\Omega} \int_{0}^{f} 2H(x,y,t)\,dt\,dx\,dy + \int_{\partial\Omega} |f-\phi|$$

Received by the editors September 2, 1984.

1980 Mathematics Subject Classification (1985 Revision). Primary 35J67, 35J65; Secondary 35J20.

in BV(Ω). Suppose that Ω has a locally Lipschitz boundary, H is Lipschitz and nondecreasing in t, and $H_0(x,y)=2H(x,y,0)$ satisfies

(2)
$$\left| \iint_A H_0(x,y) \, dx \, dy \right| \le (1-\varepsilon) \iint_A |D\chi_A|$$

for all Caccioppoli sets $A \subset \Omega$, where $0 < \varepsilon < 1$ is fixed and χ_A is the characteristic function of A. Then it is shown in [4] that there is a solution of (1) in Ω satisfying (E) (see also [5, Theorem 1.1]). Further, if $\partial \Omega \setminus \{N\}$ is smooth and its curvature $\kappa(x,y)$ satisfies

$$|2H(x, y, f(x, y))| \le \kappa(x, y)$$

at each point, then (B) also holds.

On the other hand, if H = H(x,y) and H has a bounded gradient, then the Perron method can be used as was done in [9] for H constant. (The essential ingredient necessary for the extension of Serrin's work to variable H is an interior gradient estimate and this is available in [7 and 10].) In order to use Perron's method, we need a bounded supersolution so that we know that the upper Perron class is nonempty. (A bounded subsolution would do just as well.) The results in [5] enable us to give sharp conditions on when such a supersolution can be found and also show that the two methods are closely related. If H = H(x,y) is Lipschitz and Ω has a locally Lipschitz boundary, then Giusti shows that a necessary and sufficient condition for the existence of a solution of (1) in Ω is

$$\left| 2 \iint_A H(x,y) \, dx \, dy \right| < \iint |D\chi_A|$$

for all Caccioppoli sets A strictly contained in Ω with positive measure. If the strict inequality holds when $A=\Omega$, then it is shown that (2) holds. (In the boundary case $|2\int\int_{\Omega}H|=\int\int_{\Omega}|D\chi_{\Omega}|=H_1(\partial\Omega)$, the unique (up to a constant) solution of (1) is bounded iff $\kappa(x,y)<2H(x,y)$.) We see then that in many cases the Perron method can be applied if and only if the variational method can.

Finally, if H = H(x, y), using results from [3, §15], we can give domains Ω and boundary data ϕ such that (C) must hold. In particular, if N is an inner boundary point of Ω [3], then a bound for the value of z(N), $z \in C^0(\overline{\Omega})$, satisfying (1) can be given which depends only on values of z at points of $\partial\Omega$ bounded away from N.

2. A parametric representation of z = f(x, y). Define

$$S = \{(x, y, f(x, y)) | (x, y) \in \overline{\Omega} \setminus \{N\}\},$$

$$\Gamma = \{(x, y, \phi(x, y)) | (x, y) \in \partial\Omega\},$$

and $S_0 = S \setminus \Gamma$. Let $T = \{(0,0,z) | z \text{ is real}\}$ be the z-axis. We need some parameter domains, so set $E = \{(u,v) | u^2 + v^2 < 1\}$, $B = \{(u,v) \in E | v > 0\}$, $\partial' B = \{(u,v) | u^2 + v^2 = 1, v > 0\}$, $\partial'' B = \{(u,0) | -1 < u < 1\}$, and $B' = B \cup \partial' B$. Let $P = (0,0,\phi(0,0))$ and $\Gamma_0 = \Gamma \setminus \{P\}$.

LEMMA 2.1. There is a vector $X \in C^0(B': R^3) \cap C^2(B: R^3)$ with the following properties:

- (i) X is a homeomorphism of B onto S_0 .
- (ii) X maps $\partial' B$ strictly monotonically onto Γ_0 .
- (iii) X is conformal on B, i.e. $X_u \circ X_v = 0$, $X_u^2 = X_v^2$ on B.

- (iv) $X_{uu} + X_{vv} = 2H(X)X_u \times X_v$ on B.
- (v) If we write X(u,v) = (x(u,v),y(u,v),z(u,v)), then $x,y \in C^0(\overline{B})$ and x(u,0) = y(u,0) = 0 for $-1 \le u \le 1$.
- (vi) As $0 \le \theta \le \pi$ increases, $K(\cos(\theta), \sin(\theta))$ moves in a clockwise direction about $\partial\Omega$. Here K(u, v) = (x(u, v), y(u, v)).

PROOF. At each point Q of S_0 , there is a neighborhood U of Q in S_0 and a vector $Y \in C^2(E:\mathbb{R}^3)$ such that Y is a homeomorphism from E onto U, Y is conformal on E, and $\Delta Y = 2H(Y)Y_u \times Y_v$. Let us pick the vectors $\{Y\}$ so $\{Y_u \times Y_v\}$ gives a consistent orientation to S_0 . We may now regard S_0 as a Riemann surface with local uniformizing parameters $\{Y^{-1}\}$. By the uniformization theorem for simply connected Riemann surfaces, there is a global uniformizing parameter Φ mapping E onto S_0 . This means that Φ is a homeomorphism of E onto S_0 and that $Y^{-1} \circ \Phi$ is analytic for each local uniformizing parameter Y^{-1} when we regard the domains of Φ and Y as being subsets of the complex plane. Since $\Phi = Y \circ (Y^{-1} \circ \Phi)$ on an open subset of E, we see that Φ is conformal on E and that $\Delta \Phi = 2H(\Phi)\Phi_u \times \Phi_v$.

Set $\Phi(u,v)=(a(u,v),b(u,v),c(u,v))$ and consider the map G(u,v)=(a(u,v),b(u,v)). Notice that $\iint_E G_u^2+G_v^2\,du\,dv\leq 2\iint_E |\Phi_u|^2\,du\,dv=2A(S)<\infty$, where A(S) is the area of S. If we apply the proof of Theorem 2.4 of [1] to G, we see that $G\in C^0(\overline{E}:\mathbf{R}^2)$. If we define σ as the subset of ∂E which G maps onto $\partial\Omega\setminus\{N\}$, then $\Phi\in C^0(E\cup\sigma)$, since $f\in C^0(\overline{\Omega}\setminus\{N\})$.

Let $w_0 \in \partial \Omega$ and set $\Omega(\varepsilon) = \{w \in \Omega | |w - w_0| < \varepsilon\}$ and $E(\varepsilon) = G^{-1}(\Omega(\varepsilon))$ for all $\varepsilon > 0$. Since $G^{-1}(x,y) = \Phi^{-1}(x,y,f(x,y))$, G is a homeomorphism of E and Ω . For $\varepsilon > 0$ small enough, the open sets $\Omega(\varepsilon)$ and $\Omega \setminus \overline{\Omega(\varepsilon)}$ are connected and simply connected and so $E(\varepsilon)$ and $E \setminus \overline{E(\varepsilon)}$ are connected and simply connected. Thus $\phi \neq \partial E \cap \overline{E(\varepsilon)}$ is a connected arc of ∂E . Since $\{E(\varepsilon)\}$ is a nested collection, $\overline{E(\varepsilon)}$ converges to a closed, connected arc $\sigma(w_0) \subset \partial E$ as $\varepsilon \to 0$. Notice that $\sigma(w_0) = G^{-1}(w_0)$ by construction and so G is weakly monotonic on $\sigma(w_0) \in G$. In particular $\sigma(w_0) \in G$ is connected and $\sigma(w_0) \in G$. Now if we use $\sigma(w_0) \in G$ are set $\sigma(w_0) \in G$. Now if we use $\sigma(w_0) \in G$ and $\sigma(w_0) \in G$.

If $\partial E \setminus \sigma$ were a single point, we could use the proof of Lemma 2.2 to show that $\Phi \in C^0(\overline{E})$ and so $f \in C^0(\overline{\Omega})$, in contradiction to (C). To finish, we need only compose Φ with a suitable conformal map of B onto E and obtain X. Q.E.D.

The proof of the next lemma is a (minor) modification of the proof of Lemma 2.2 of [8]. Our proof is self-contained for the sake of clarity.

LEMMA 2.2. $X \in C^0(\overline{B})$.

PROOF. We need prove only that $z \in C^0(\overline{B})$. We will prove that z is uniformly continuous on B and so extends to a function in $C^0(\overline{B})$.

Let $\varepsilon > 0$. Define g(x,y) as the function whose graph is the upper half-sphere of radius 1/2Q centered at (0,0,0). Pick d>0 so that $g(0,0)-g(2d,0)<\varepsilon/4$. For some $0<\tau<\min(d,\varepsilon/4)$, the diameter of the shortest arc on $\Gamma\cup T$ joining two points on $\Gamma\cup T$ is less than $\min(d,\varepsilon/4)$ whenever the distance between the points is less than τ [1, p. 103]. Define $e(\delta)=4A(S)/\ln(1/\delta)$ and pick $\delta>0$ so that $2\pi e(\delta)<\tau^2$.

Let $w_0 = (u_0, v_0) \in B$. For $\delta \leq r \leq \sqrt{\delta}$, set $C_r = \{w \in \overline{B} | |w - w_0| = r\}$. Let (r, θ) be polar coordinates at w_0 and let $\xi(r, \theta) = X(w_0 + r(\cos(\theta), \sin(\theta)))$. If

 $C_r \cap \partial B \neq \emptyset$, define $\alpha(r)$ and $\beta(r)$ by $0 \le \alpha(r) < \beta(r) \le 2\pi$ and $\{(r, \alpha(r)), (r, \beta(r))\}$ $= C_r \cap \partial B$; otherwise $\alpha(r) = 0$ and $\beta(r) = 2\pi$. Set

$$p(r) = \int_{lpha(r)}^{eta(r)} |\xi_{ heta}(r, heta)|^2 d heta;$$

then

$$\int_{s}^{\sqrt{\delta}} p(r)/r \, dr \leq 2A(S).$$

For some $\rho \in [\delta, \sqrt{\delta}]$, $\ln(1/\delta)p(\rho)/2 \le 2A(S)$ and so

$$p(\rho) \le 4A(S)/\ln(1/\delta) = e(\delta).$$

If $C_{\rho}^{*} = X(C_{\rho})$ and $L_{\rho} = \int_{\alpha(\rho)}^{\beta(\rho)} |\xi_{\theta}(\rho,\theta)| d\theta$ is the arclength of C_{ρ}' , then $L_{\rho}^{2} \leq (\beta(\rho) - \alpha(\rho))p(\rho) \leq 2\pi e(\delta) < \tau^{2}$ and so $L_{\rho} < \tau < \min(d, \varepsilon/4)$. If $C_{\rho} \cap \partial B \neq \emptyset$, then the diameter of the shortest arc on $\Gamma \cup T$ joining the ends of C_{ρ}' is at most $\min(d, \varepsilon/4)$. For any $W \subset \overline{B}$, let $W^{*} = K(W)$.

Define J_{ρ} as the component of $B \setminus C_{\rho}$ which contains w_0 . Set

$$m = \inf\{z(u,v)|(u,v) \in C_{\rho} \text{ or } (u,v) \in \partial' B \cap \overline{J}_{\rho}\}$$

and

$$M = \sup\{z(u,v) | (u,v) \in C_{\rho} \text{ or } (u,v) \in \partial' B \cap \overline{J}_{\rho}\}.$$

Let $U = K(J_{\rho})$ and $D_{\rho} = C_{\rho} \cup (\overline{J}_{\rho} \cap \partial' B)$. Notice that $X(J_{\rho})$ is the graph of f over U and that $\partial U \setminus D_{\rho}^*$ is either empty or contains the single point (0,0). Now let us define H'(x,y) = H(x,y,f(x,y)) for $(x,y) \in \Omega$ and notice that $|H'(x,y)| \leq Q$ for all $(x,y) \in \Omega$. Notice that the diameter of U is less than $L_{\rho} + \operatorname{diam}(D_{\rho}^* \setminus C_{\rho}^*)$, so less than 2d. Now we apply Lemma 2.2 of [5] (with " $\Omega = U$ ", "u = M + g - g(2d,0)", "v = f", and " $\Gamma_1 = \partial U \setminus \{N\}$ ") and see that

$$f(x,y) \le M + g(x,y) - g(2d,0) \le M + \varepsilon/4$$
 for $(x,y) \in U$.

Since z(u,v) = f(x(u,v),y(u,v)), we get $z(u,v) < M + \varepsilon/4$ for $(u,v) \in J_{\rho}$. Similarly, $-z(u,v) \le -m + \varepsilon/4$ for $(u,v) \in J_{\rho}$. Thus $m - \varepsilon/4 < z(u,v) < M + \varepsilon/4$ for $(u,v) \in J_{\rho}$.

Now the diameter of $X(\partial' B \cap \overline{J}_{\rho})$ is less than $\varepsilon/4$ and $L_{\rho} < \varepsilon/4$, so $M - m < \varepsilon/2$. If $(u, v) \in B$ and $|(u, v) - (u_0, v_0)| < \delta$, then $(u, v) \in J_{\rho}$ and so $|z(u, v) - z(u_0, v_0)| < M - m + \varepsilon/2 < \varepsilon$. Since δ is independent of w_0 , z is uniformly continuous on B and so can be extended to \overline{B} as a continuous function. Q.E.D.

3. Boundary behavior. By [6], $X \in C^1(B \cup \partial''B)$ and the branch points of X on $\partial''B$ are isolated. We see that

$$X_u(u,0) = (0,0,z_u(u,0))$$
 and $X_v(u,0) = (x_v(u,0),y_v(u,0),0)$.

Let (r,θ) be polar coordinates centered at (0,0). Then $\Omega = \{(r,\theta) | \alpha < \theta < \beta, 0 < r < r(\theta)\}$ for some $-\pi \le \alpha < 0 < \beta \le \pi$ (where we may need to rotate Ω about (0,0)). For each $\alpha < \theta < \beta$, set $x(t) = x(t,\theta) = t \cdot \cos(\theta)$ and $y(t) = y(t,\theta) = t \cdot \sin(\theta)$. We denote the radial limit of f at (0,0) from the direction θ (if it exists) by

$$Rf(\theta) = \lim_{t \to 0+} f(x(t,\theta), y(t,\theta)).$$

Set $\lambda(t) = (x(t), y(t), f(x(t)), y(t))$ and $\omega(t) = X^{-1}(\lambda(t))$. Notice that $\lambda(t) \to (0, 0, Rf(\theta))$ as $t \to 0+$ if $\lambda(t)$ converges to a point as $t \to 0+$. Finally define $Rf(\alpha) = Rf(\beta) = \phi(0, 0)$ and $u(\alpha) = -1$, $u(\beta) = 1$.

THEOREM 3.1. For all $\alpha < \theta < \beta$, there is a unique $u(\theta) \in [-1, 1]$ such that $\omega(t) \to (u(\theta), 0)$ as $t \to 0+$. Also, $u \in C^0([\alpha, \beta])$. Thus $Rf(\theta) = z(u(\theta), 0)$ exists for all $\alpha \le \theta \le \beta$ and $Rf \in C^0([\alpha, \beta])$.

The proof is the same as the proof of Lemma 3.1 of [8]. The only facts we use in this proof are that $X \in C^1(B \cup \partial''B)$, K is a homeomorphism of B and Ω , and the regular points of X on $\partial''B$ are dense in $\partial''B$. The fact that X maps $\partial'B$ (weakly or strongly) monotonically onto Γ_0 is not important and can be replaced by the following fact:

$$(x_v(u(\theta),0),y_v(u(\theta),0)) = |z_u(u(\theta),0)|(\cos(\theta),\sin(\theta))$$

for $\alpha < \theta < \beta$ and so $u(\theta)$ is weakly monotonic on (α, β) .

THEOREM 3.2. There exist $\lambda \in [\alpha, \beta - \pi]$ and $u_0 \in [-1, 1]$ such that $u(\theta) = u_0$ for all $\theta \in [\lambda, \lambda + \pi]$; also X is strictly monotonic on $[-1, u_0]$ and on $[u_0, 1]$.

PROOF. Suppose $\theta_0 \in [\beta - \pi, \alpha + \pi]$ and X(u,0) is not weakly monotonic on $-1 \le u \le u(\theta_0)$. Then X has a branch point at (b,0) for some $-1 < b < u(\theta_0)$ and $z_u(u,0)$ changes sign at u=b, say $z_u(u,0)>0$ on $(b-\varepsilon,b)$ and $z_u(u,0)<0$ on $(b,b+\varepsilon)$ for some $\varepsilon>0$. Pick a and c so that $b-\varepsilon < a < b < c < b+\varepsilon$ and z(a,0)=z(c,0). Then $a=u(\theta(a)), \ c=u(\theta(c)), \ and \ \alpha < \theta(a) < \theta(c) < \alpha + \pi$. Let ω be a smooth Jordan arc in B from (a,0) to (c,0) such that $\sigma=X(\omega)$ is a simple, closed Jordan curve, $\tau=K(\omega)$ is a convex Jordan curve which is smooth except at (0,0), and the curvature $\kappa(x,y)$ satisfies $\kappa(x,y) \ge 2Q$ for all $(0,0) \ne (x,y) \in \tau$. Let U be the open region bounded by τ . We will use the function H'(x,y)=H(x,y,f(x,y)) mentioned earlier.

First, let $h \in C^0(\overline{U} \setminus \{N\})$ be the unique variational solution of $(p/W)_x + (q/W)_y = H'(x,y)$ in U with h = f on $\tau \setminus \{N\}$ [4]. (We know that (2) is satisfied because of [5].) If we use a barrier argument of Serrin [9, pp. 375–376] together with Lemma 2.2 of [5], we see that $h \in C^0(\overline{U})$.

Second, by Lemma 2.2 of [5], we see that f=h on U. This implies that $Rf(\theta)=h(0,0)$ for all $\theta\in(\theta(a),\theta(c))$, a contradiction. Thus X(u,0) is weakly monotonic on $-1\leq u\leq u(\theta_0)$. Using [6], we see that X(u,0) is strictly monotonic on $-1\leq u\leq u(\theta_0)$. Similarly, X(u,0) is strictly monotonic on $u(\theta_0)\leq u\leq 1$. If θ_1 is another element of $[\beta-\pi,\alpha+\pi]$, the same argument proves that X(u,0) is strictly monotonic on $-1\leq u\leq u(\theta_1)$ and on $u(\theta_1)\leq u\leq 1$. Since X(-1,0)=X(1,0)=P, we see that $u(\theta_0)=u(\theta_1)$. Thus $u(\theta)$ is constant on $[\beta-\pi,\alpha+\pi]$.

Suppose now that $\theta_2, \theta_3 \in [\alpha, \beta]$ with $0 < \theta_3 - \theta_2 < \pi$. The argument above shows that X is strictly monotonic on $[u(\theta_2), u(\theta_3)]$. Q.E.D.

Let $\theta_L = \inf\{\theta \in [\alpha, \beta] | u(\theta) = u_0\}$ and $\theta_R = \sup\{\theta \in [\alpha, \beta] | u(\theta) = u_0\}$. We know that $\theta_R - \theta_L \ge \pi$. Also $u(\cdot)$ is a homeomorphism of $[\alpha', \theta_L]$ onto $[-1, u_0]$ and of $[\theta_R, \beta']$ onto $[u_0, 1]$, for some $\alpha \le \alpha' \le \theta_L$ and $\theta_R < \beta' \le \beta$. Thus

THEOREM 3.3. The radial limits $Rf \in C^0([\alpha, \beta])$ behave as follows:

(i) The extreme values of $Rf(\theta)$ are $Rf(\alpha) = Rf(\beta) = \phi(0,0)$ and $Rf(0) = z(u_0,0)$.

- (ii) $Rf(\theta)$ is monotonic on $[\alpha, \theta_L]$.
- (iii) $Rf(\theta) = z(u_0, 0)$ for all $\theta \in [\theta_L, \theta_R]$.
- (iv) $Rf(\theta)$ is monotonic on $[\theta_R, \beta]$.

Let U be open in \mathbb{R}^2 with $(0,0) \in \partial U$, H(x,y,t) be continuous on $U \times \mathbb{R}$, $\phi \in C^0(\partial U)$, and f be a C^2 solution of (1) in U. Suppose that for some $\varepsilon > 0$, the set $\Omega = \{(x,y) \in U | x^2 + y^2 < \varepsilon^2\}$ is locally convex at every point of $\partial \Omega$ except (0,0) and f satisfies assumptions (B), (D), (E) in Ω . Then f behaves at (0,0) as indicated in Theorem 3.3. As in [8], we make the following

CONJECTURE. If $\theta_R - \theta_L > \pi$, then $f \in C^0(\overline{\Omega})$.

ADDED IN PROOF. The conjecture mentioned above has been proven in Non-parametric minimal surfaces in \mathbb{R}^3 whose boundaries have a jump discontinuity (preprint) by the second author.

REFERENCES

- R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience, New York, 1950.
- R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 2, Interscience, New York, 1962.
- 3. R. Finn, Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature, J. Analyse Math. 14 (1965), 139-160.
- C. Gerhardt, Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature, Math. Z. 139 (1974), 173-198.
- 5. E. Giusti, On the equation of surfaces of prescribed mean curvature, Invent. Math. 46 (1978), 111-137.
- 6. E. Heinz, Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern, Math. Z. 113 (1970), 99-105.
- 7. O. Ladyzhenskaya and N. Ural'tseva, Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Comm. Pure Appl. Math. 23 (1969), 677-703.
- 8. K. Lancaster, Boundary behavior of a non-parametric minimal surface in R³ at a non-convex point, Analysis 5 (1985), 61-69.
- 9. J. Serrin, The Dirichlet problem for surfaces of constant mean curvature, Proc. London Math. Soc. (3) 21 (1970), 361-384.
- 10. N. Trudinger, Gradient estimates and mean curvature, Math. Z. 131 (1973), 165-175.

DEPARTMENT OF MATHEMATICS AND STATISTICS, WICHITA STATE UNIVERSITY, WICHITA, KANSAS 67208